مشتق‌پذیری

به تابعی که مختلط مشتق‌پذیر باشد، تابع تحليلی یا تابع تمامريخت گفته می‌شود و آن زمانی است که حد زیر در دایره بازی، در اطراف نقطه z0 وجود داشته باشد. در اینجا مسلما z یک مقدار مختلط است.

تعریف بالا، هم ارز است با شرايط کوشی-ریمان که به راحتی از آن به دست می‌آید. :

 فرمول کوشی

فرمول انتگرال کوشی یا به طور بهتر قضیه کوشی، برای هر تابعی که بر روی محیط خاصی تحليلی باشد، صادق است:

در اینجا، انتگرال مسیری، بر روی محیطی انجام می‌پذیرد که تابع در آن مشتق‌پذیر است.

قضیه مانده‌ها

(انگلیسی: Residue theorem) به مقاله اصلی مراجعه شود.

بسط دادن

بر خلاف، توابع حقیقی، بسط تیلور برای توابع تحليلی، همیشه امکان‌پذیر است. از این گذشته، در شرایط خاصی نیز می‌توان از بسط لورنتس در این تئوری استفاده کرد.